
Building a Reliable Software 
Infrastructure for Scientific 

Computing

Osni Marques
Lawrence Berkeley National Laboratory (LBNL)

oamarques@lbl.gov

UC Berkeley - CS267 



03/31/2004UC Berkeley - CS267 2

Outline

• Keeping the pace with the software and hardware
• Hardware evolution
• Performance tuning
• Software selection
• What is missing?

• The DOE ACTS Collection Project
• Goals
• Related activities
• Current features
• Lessons learned
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Two Applications: Ax=λx

Simplified model of the “Namorado” steel 
jacket platform, 170 meters water depth, 
2463 degrees of freedom, ω1=1.71rad/s.

Simplified model of the 
maltodextrin protein (370 residues) 

using the RTB method.
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Singular Value Decomposition (SVD)
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Algorithms:

• Dense matrices: LAPACK, ScaLAPACK,…
• Sparse matrices: Subspaces, Lanzos,…

SVD and eigenvalues:

Applications: 
• Digital signal processing
• Protein substate modeling and identification
• Spectrum analysis
• Model reduction
• Fuzzy and neural systems
• Data compression
• Inverse problems
• Information retrieval

�

http://www-bioc.rice.edu/~tromo
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Two SVD Applications

http://www.cs.utk.edu/~lsi/

• Data: travel times of sound waves generated 
by earthquakes used to infer structure in the 
entire Earth (crust, mantle and core). 

• Goal: model for the internal structure of the 
Earth.

• More than 1x106 data points and 2x105 

parameters.
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Computing Y=(ATA)X in Parallel

• One processor reads A (by rows) and sends the data to 
other processors 

• A is stored by means of 3 arrays: 
• one (integer) array stores the number of nonzero 

entries in each row
• one (integer) array stores the column indices
• one (real) array stores the corresponding entries

• A redistribution of A is performed so as each processor 
contains roughly the same number of entries 

• A quick sort is applied  to the indices to prevent cache 
misses

12

block sizetime

26.3%24.5%20.0%21.4%18.3%eigenvectors

13.2%13.1%15.0%16.4%19.7%reduced problem (T)
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Model of dimension 846968 by 96300, 28587210 nonzeros, 
k=500, nvb=1 to 5, tol=10-6, 32 processors (Cray T3E 900).

• Requires only products of the form
• Generates a basis                              through 

a simple three-term recurrence
• The projection of                     is a symmetric 

tridiagonal matrix     (of dimension j << n )
• The solutions of                 together with      

lead to approximate solutions of
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High Performance Computers (Sustainable Performance)

• ~ 20 years ago →→→→ 1x106 Floating Point Ops/sec (Mflop/s)
• Scalar based

• ~ 10 years ago →→→→ 1x109 Floating Point Ops/sec (Gflop/s)
• Vector & Shared memory computing, bandwidth aware
• Block partitioned, latency tolerant

• ~ Today →→→→ 1x1012 Floating Point Ops/sec (Tflop/s) 
• Highly parallel, distributed processing, message passing, network based
• data decomposition, communication/computation

• ~ 10 years away →→→→ 1x1015 Floating Point Ops/sec (Pflop/s)
• Many more levels of memory hierarchy, combination of grids&HPC
• More adaptive, latency and bandwidth aware, fault tolerant, extended 

precision, attention to SMP nodes
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Architectures

Single 
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SMP

MPP

SIMD

Constellation 

Cluster - NOW
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Why do we need these tools?

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• More code development in 
less time!

• More simulation in less 
computer time!

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• More code development in 
less time!

• More simulation in less 
computer time!A computation that took 1 full year to complete in

1980 could be done in ~ 10 hours in 1992, in ~ 16 
minutes in 1997 and in ~ 27 seconds in 2001!
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Rank Manufacturer Computer 
Rmax 

[TF/s]
Installation Site Country Year Area of 

Installation # Proc 

1 NEC Earth-Simulator 35.86 Earth Simulator Center Japan 2002 Research 5120 

2 HP ASCI Q, 
AlphaServer SC 13.88 Los Alamos  

National Laboratory USA 2002 Research 8192 

3 Linux NetworX MCR Linux 
Cluster Xeon 7.63 Lawrence Livermore  

National Laboratory USA 2002 Research 2304 

4 IBM ASCI White 
SP Power3 7.30 Lawrence Livermore  

National Laboratory USA 2000 Research 8192 

5 IBM SP Power3  7.30 NERSC/LBNL USA 2002 Research 6656 

Top 5 Machines: 
http://www.top500.org

(June 2003)

Top 5 Machines: 
http://www.top500.org

(June 2003)
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Automatic Tuning

• For each kernel
1. Identify and generate a space of 

algorithms
2. Search for the fastest one, by running 

them
• What is a space of algorithms?

• Depending on kernel and input, may 
vary

• instruction mix and order
• memory access patterns
• data structures 
• mathematical formulation 

• When do we search?
• Once per kernel and architecture 
• At compile time
• At run time
• All of the above

• PHiPAC:
www.icsi.berkeley.edu/~bilmes/phipac

• ATLAS:
www.netlib.org/atlas

• XBLAS:
www.nersc.gov/~xiaoye/XBLAS

• Sparsity: www.cs.berkeley.edu/~yelick/sparsity
• FFTs and Signal Processing

• FFTW: www.fftw.org
• Won 1999 Wilkinson Prize for 

Numerical Software
• SPIRAL: www.ece.cmu.edu/~spiral

• Extensions to other transforms, DSPs
• UHFFT 

• Extensions to higher dimension, 
parallelism
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Tuning pays off!

C A B= *Example: PHiPAC  ⇒
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What About Software Selection?

• Use a direct solver (A=LU) if
• Time and storage space acceptable
• Iterative methods don’t converge
• Many b’s for same A

• Criteria for choosing a direct solver
• Symmetric positive definite (SPD)
• Symmetric
• Symmetric-pattern
• Unsymmetric

• Row/column ordering schemes available
• MMD, AMD, ND, graph partitioning

• Hardware

bAx =  :Example

Build a preconditioning matrix K such that
Kx=b is much easier to solve than Ax=b and 
K is somehow “close” to A (incomplete LU
decompositions, sparse approximate 
inverses, polynomial preconditioners, 
preconditioning by blocks or domains, 
element-by-element, etc). See Templates for 
the Solution of Linear Systems: Building 
Blocks for Iterative Methods.
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Bugs…
On February 25, 1991, during the Gulf 
War, an American Patriot Missile 
battery in Dharan, Saudi Arabia, failed 
to track and intercept an incoming 
Iraqi Scud missile. The Scud struck an 
American Army barracks, killing 28 
soldiers and injuring around 100 other 
people. The problem was an inaccurate 
calculation of the time since boot due 
to computer arithmetic errors. 

http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html

On June 4, 1996, an Ariane 5 rocket launched by the European Space 
Agency exploded just forty seconds after its lift-off from Kourou, French 
Guiana.  The rocket was on its first voyage, after a decade of 
development costing $7 billion. The problem was a software error in the 
inertial reference system. Specifically a 64 bit floating point number 
relating to the horizontal velocity of the rocket with respect to the 
platform was converted to a 16 bit signed integer. 

On August  23,1991, he first concrete base structure 
for the Sleipner A platform sprang a leak and sank 
under a controlled ballasting operation during 
preparation for deck mating in Gandsfjorden outside
Stavanger, Norway. The post accident investigation 
traced the error to inaccurate finite element 
approximation of the linear elastic model of the tricell
(using the popular finite element program NASTRAN). 
The shear stresses were underestimated by 47% 
leading to insufficient design. In particular, certain 
concrete walls were not thick enough. 
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o

IF( Z( J4-2 ).EQ.ZERO ) THEN
Z( J4 ) = ZERO
D = Z( J4+1 )
DMIN = D
EMIN = ZERO

ELSE IF( SAFMIN*Z( J4+1 ).LT.Z( J4-2 ) .AND.
$ SAFMIN*Z( J4-2 ).LT.Z( J4+1 ) ) THEN

TEMP = Z( J4+1 ) / Z( J4-2 )
Z( J4 ) = Z( J4-1 )*TEMP
D = D*TEMP

ELSE
Z( J4 ) = Z( J4+1 )*( Z( J4-1 ) / Z( J4-2 ) )
D = Z( J4+1 )*( D / Z( J4-2 ) )

END IF
o

Underflows and Performance of the dqds Algorithm

Performance of the dqds algorithm on a SUN Ultra 30 calling 
xLASQ1 (blue) or xLASQ2 (red), multiplying the same input 

data by two different scaling factors. Depending on the 
scaling, a test with SAFMIN (see code to the left) led to a 

large number of underflows (dealt with at software level and 
greatly degrading the computational performance).  

function xLASQ1

function xLASQ2

function xLASQ3

function xLASQ4

function xLASQ5

function xLASQ6

Data preprocessing

LAPACK:  http://www.netlib.org/lapack
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Challenges in the Development of Scientific Codes

• Productivity
• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Model coupling
• Interdisciplinarity

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications
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• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Model coupling
• Interdisciplinarity

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications

• Libraries written in different languages.
• Discussions about standardizing 

interfaces are often sidetracked into 
implementation issues. 

• Difficulties managing multiple libraries 
developed by third-parties.

• Need to use more than one language in 
one application.

• The code is long-lived and different 
pieces evolve at different rates

• Swapping competing implementations of 
the same idea and testing without 
modifying the code

• Need to compose an application with 
some other(s) that were not originally 
designed to be combined
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Components: simple example
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The Reality…

• The development of complex simulation codes on parallel 
computers is not a trivial task.

• Usually, a significant percentage of the efforts focus on the 
development of the codes and their optimization. 

• There is a need for a collaboration framework for ongoing 
development and deployment of computational tools.

• In 1999, the PITAC Report recommended the creation of a 
national library of certified domain-specific software in order 
to reduce the labor required for software development, 
testing and evolution. 

• Research in computational sciences is fundamentally 
interdisciplinary and addresses, among many others, climate 
and environment modeling,  DNA sequencing, flows in 
geological structures, etc.
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and environment modeling,  DNA sequencing, flows in 
geological structures, etc.



03/31/2004UC Berkeley - CS267 18

What is the ACTS Collection?

• Advanced CompuTational Software Collection
• Tools for developing parallel applications
• ACTS started as an “umbrella” project

http://acts.nersc.gov

Goals
� Extended support for experimental software

� Make ACTS tools available on DOE computers 

� Provide technical support (acts-support@nersc.gov)

� Maintain ACTS information center (http://acts.nersc.gov)

� Coordinate efforts with other supercomputing centers

� Enable large scale scientific applications

� Educate and train 
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ACTS: levels of support

• High
• Intermediate level
• Tool expertise
• Conduct tutorials

• Intermediate
• Basic level
• Provide a higher level of support to users of the tool
• Basic

• Basic knowledge of the tools
• Help with installation 
• Compilation of user’s reports (acts-support@nersc.gov)
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ACTS Tools Functionalities 

Extensible implementation of the expression template technique (C++ technique for passing expressions as function 
arguments).

PETE

Tools for the automatic generation of optimized numerical software for modern computer architectures and compilers.ATLAS and PHiPAC
Library 

Development

Set of tools for analyzing the performance of C, C++, Fortran and Java programs.TAU

Tools and run-time support for building easy-to-use external interfaces to existing numerical codes.SILOON

Framework for coupling parallel applications within a component-like model.PAWS

Services for the creation of computational Grids and tools with which applications can be developed to access the Grid.Globus

Framework that enables programmers to incorporate fault-tolerance, interactive visualization and computational steering 
into existing parallel programs

CUMULVS

Code Execution

Object-Oriented tools for solving computational fluid dynamics and combustion problems in complex geometries.Overture

Library for writing parallel programs that use large arrays distributed across processing nodes and that offers a shared-
memory view of distributed arrays.

Global Arrays
Code Development

General-purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations.SuperLU

Library of high performance dense linear algebra routines for distributed-memory message-passing.ScaLAPACK

Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic equations, and differential-
algebraic equations.

SUNDIALS

Object-oriented nonlinear optimization package.OPT++

Tools for the solution of PDEs that require solving large-scale, sparse linear and nonlinear systems of equations.PETSc

Algorithms for the iterative solution of large sparse linear systems, intuitive grid-centric interfaces, and dynamic 
configuration of parameters.

Hypre

Algorithms for the iterative solution of large sparse linear systems.Aztec

Large-scale optimization software, including nonlinear least squares, unconstrained minimization, bound constrained 
optimization, and general nonlinear optimization.

TAO

Numerical

FunctionalitiesToolCategory

�

ODEs
PDEs

TVUA
zAz

bAx

Σ=
=
=

λ
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Use of ACTS Tools

Finite Differences
Finite Elements

Boundary Elements
Fourier

����

continuous problem discrete problem

grid

Model of a "hard" sphere included in 
a "soft" material, 26 million d.o.f. 
(Adams and Demmel, Prometheus 

and PETSc, unstructured meshes in 
solid mechanics).

3D overlapping grid for a 
submarine produced with 
Overture’s module ogen.
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Multiphase flow using PETSc, 4 million cell 
blocks, 32 million DOF, over 10.6 Gflops on 
an IBM SP (128 nodes), entire simulation 
runs in less than 30 minutes (Pope, Gropp, 

Morgan, Seperhrnoori, Smith and Wheeler).
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Use of ACTS Tools

Induced current (white arrows) and charge density 
(colored plane and gray surface) in crystallized glycine 

due to an external field (Louie, Yoon, Pfrommer and  
Canning), eigenvalue problems solved with ScaLAPACK.

OPT++ is used in protein energy 
minimization problems (shown here is 
protein T162 from CASP5, courtesy 

of Meza , Oliva et al.)

Omega3P is a parallel distributed-memory code intended for the 
modeling and analysis of accelerator cavities, which requires the solution 

of generalized eigenvalue problems. A parallel exact shift-invert
eigensolver based on PARPACK and SuperLU has allowed for the solution 

of a problem of order 7.5 million with 304 million nonzeros. Finding 10 
eigenvalues requires about 2.5 hours on 24 processors of an IBM SP. 

Two ScaLAPACK routines, 
PZGETRF and PZGETRS, are 
used for solution of linear 
systems in the spectral 
algorithms based AORSA 
code (Batchelor et al.), 
which is intended for the 
study of electromagnetic 
wave-plasma interactions. 
The  code reaches  68% of 
peak performance on 1936 
processors of an IBM SP.
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Cosmic Microwave Background (CMB) Analysis
• The statistics of the tiny variations in the CMB (the faint echo of 

the Big Bang) allows the determination of the fundamental 
parameters of cosmology to the percent level or better. 

• MADCAP (Microwave Anisotropy Dataset Computational 
Analysis Package) 

• Makes maps from observations of the CMB and then calculates their 
angular power spectra. (See http://crd.lbl.gov/~borrill).

• Calculations are dominated by the solution of linear systems of the 
form M=A-1B for dense nxn matrices A and B scaling as O(n3) in flops. 
MADCAP uses ScaLAPACK for those calculations.

• On the NERSC Cray T3E (original code):
• Cholesky factorization and triangular solve.
• Typically reached 70-80% peak performance.
• Solution of systems with n ~ 104 using tens of processors. 
• The results demonstrated that the Universe is spatially flat, comprising 

70% dark energy, 25% dark matter, and only 5% ordinary matter.
• On the NERSC IBM SP:

• Porting was trivial but tests showed only 20-30% peak performance. 
• Code rewritten to use triangular matrix inversion and triangular matrix 

multiplication � one-day work 
• Performance increased to 50-60% peak.
• Solution of previously intractable systems with n ~ 105 using hundreds 

of processors.

The international 
BOOMERanG collaboration 
announced results of the 
most detailed measurement 
of the cosmic microwave 
background radiation (CMB), 
which strongly indicated 
that the universe is flat 
(Apr. 27, 2000). 
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ScaLAPACK: software structure

ScaLAPACK

BLAS

LAPACK BLACS

MPI/PVM/...

PBLAS
Global
Local

platform specific

Clarity,modularity, performance 
and portability. Atlas can be 

used here for automatic tuning.

Clarity,modularity, performance 
and portability. Atlas can be 

used here for automatic tuning.

Linear systems, least 
squares, singular 

value decomposition, 
eigenvalues.

Linear systems, least 
squares, singular 

value decomposition, 
eigenvalues.

Communication 
routines targeting 

linear algebra 
operations.

Communication 
routines targeting 

linear algebra 
operations.

Parallel BLAS.Parallel BLAS.

Communication layer 
(message passing).

Communication layer 
(message passing).

http://acts.nersc.gov/scalapack
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BLAS

• Clarity: code is shorter and easier to 
read.

• Modularity: gives programmer larger 
building blocks.

• Performance: manufacturers 
(usually) provide tuned machine-
specific BLAS.

• Portability: machine dependencies 
are confined to the BLAS.

• Key to high performance: effective 
use of memory hierarchy (true on all 
architectures).

(Basic Linear Algebra Subroutines)
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• Level 1 BLAS: vector-vector operations.
• Level 2 BLAS: matrix-vector operations.
• Level 3 BLAS: matrix-matrix operations.

Development of blocked 
algorithms (BLAS 3)  is 

important for performance!

Development of blocked 
algorithms (BLAS 3)  is 

important for performance!
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LAPACK

• Linear Algebra library written in Fortran 77 (Fortran 90, C and C++ 
versions also available).

• Combine algorithms from LINPACK and EISPACK into a single 
package.

• Efficient on a wide range of computers (RISC, Vector, SMPs).
• User interface similar to LINPACK (Single, Double, Complex, 

Double Complex).
• Built atop level 1, 2, and 3 BLAS for high performance, clarity,

modularity and portability.

(http://www.netlib.org/lapack)

• Basic problems:
• Linear systems:
• Least squares:
• Singular value decomposition:
• Eigenvalues and eigenvectors:

• LAPACK does not provide routines for structured 
problems or general sparse matrices

bAx =

2
min bAx −

TVUA Σ=
BzAzzAz λλ == ,
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BLACS

• A design tool, they are a conceptual aid in design and 
coding.

• Associate widely recognized mnemonic names with 
communication operations. This improves:
• program readability
• self-documenting quality of the code.

• Promote efficiency by identifying frequently occurring 
operations of linear algebra which can be optimized on 
various computers.

(Basic Linear Algebra Communication Subroutines)
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BLACS: basics

• Processes are embedded in a two-dimensional grid.

Example: a 3x4 grid 

• An operation which involves more than one sender and 
one receiver is called a scoped operation.

10 32

0

0         

1 2 3

54 76

98 1110

1         

2         

Scope Meaning 
Row All processes in a process row participate. 
Column All processes in a process column participate. 
All All processes in the process grid participate. 
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* Get system information

CALL BLACS_PINFO( IAM, NPROCS )

* If underlying system needs additional setup, do it now

IF( NPROCS.LT.1 ) THEN

IF( IAM.EQ.0 ) NPROCS = 4

CALL BLACS_SETUP( IAM, NPROCS )

END IF

* Get default system context

CALL BLACS_GET( 0, 0, ICTXT )

oooo

* Define 1 x (NPROCS/2+1) process grid

NPROW = 1

NPCOL = NPROCS / 2 + 1

CALL BLACS_GRIDINIT( ICTXT, ‘Row’, NPROW, NPCOL )

CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )

* If I’m not in the grid, go to end of program

IF( MYROW.NE.-1 ) THEN
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN

CALL DGESD2D( ICTXT, 5, 1, X, 5, 1, 0 )
ELSE IF( MYROW.EQ.1 .AND. MYCOL.EQ.0 ) THEN

CALL DGERV2D( ICTXT, 5, 1, Y, 5, 0, 0 )
END IF

oooo

CALL BLACS_GRIDEXIT( ICTXT )

END IF

CALL BLACS_EXIT( 0 )

END

BLACS: example

(in) uniquely identifies each process
(in) number of processes available
(in) integer handle indicating the context
(in) use (default) system context
(out) BLACS context

(output) process row 
and column coordinate

See http://www.netlib. org/blacs
for more information.

(out) uniquely identifies each process
(out) number of processes available

• The BLACS context is the 
BLACS mechanism for 
partitioning communication 
space. 

• A message in a context cannot 
be sent or received in another 
context. 

• The context allows the user to
• create arbitrary groups of 

processes
• create multiple 

overlapping and/or disjoint 
grids

• isolate each process grid so 
that grids do not interfere 
with each other

• BLACS context ⇔⇔⇔⇔ MPI 
communicator

send X to process (1,0)

receive X  from process (0,0)

leave context

exit from the BLACS
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PBLAS

• Similar to the BLAS in portability, functionality and naming.
• Built atop the BLAS and BLACS
• Provide global view of matrix

CALL DGEXXX( M, N, A( IA, JA ), LDA, ... )

CALL PDGEXXX( M, N, A, IA, JA, DESCA, ... )

BLAS

PBLAS

(Parallel Basic Linear Algebra Subroutines)

Array descriptor 
(see next slides)

Array descriptor 
(see next slides)
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PBLAS: levels and view of the operands

• Levels:
• Level 1: vector-vector operations.
• Level 2: matrix-vector operations.
• Level 3: matrix-matrix operations.

• Global view of the matrix operands, allowing global 
addressing of distributed matrices (hiding complex 
local  indexing)

A(IA:IA+M-1,JA:JA+N-1)

JA

IA

N_

N

MM_
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ScaLAPACK: goals

• Efficiency
• Optimized computation and communication engines
• Block-partitioned algorithms (Level 3 BLAS) for good node performance

• Reliability
• Whenever possible, use LAPACK algorithms and error bounds

• Scalability
• As the problem size and number of processors grow
• Replace LAPACK algorithm that did not scale (new ones into LAPACK)

• Portability
• Isolate machine dependencies to BLAS and the BLACS

• Flexibility
• Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)

• Ease-of-Use
• Calling interface similar to LAPACK
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ScaLAPACK: data layouts

• 1D block and cyclic column distributions

• 1D block-cycle column and 2D block-cyclic distribution
• 2D block-cyclic used in ScaLAPACK for dense matrices
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ScaLAPACK: 2D Block-Cyclic Distribution

a11 a12 a15 a13 a14 

a21 a22 a25 a23 a24 

a51 a52 a55 a53 a54 

a31 a32 a35 a33 a34 

a41 a42 a45 a43 a44 
 

 

5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view

a11 a12 a13 a14 a15 

a21 a22 a23 a24 a25 

a31 a32 a33 a34 a35 

a41 a42 a43 a44 a45 

a51 a52 a53 a54 a55 
 

 

a11 a12 a13 a14 a15 

a21 a22 a23 a24 a25 

a31 a32 a33 a34 a35 

a41 a42 a43 a44 a45 

a51 a52 a53 a54 a55 
 

 

a11 a12 a13 a14 a15 

a21 a22 a23 a24 a25 

a31 a32 a33 a34 a35 

a41 a42 a43 a44 a45 

a51 a52 a53 a54 a55 
 

 

0 1

2 3
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2D Block-Cyclic Distribution























−−−−
−−−

−−
−

5.54.53.52.51.5
5.44.43.42.41.4
5.34.33.32.31.3
5.24.23.22.21.2
5.14.13.12.11.1 oooo

CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )

IF ( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
A(1) = 1.1; A(2) = -2.1; A(3) = -5.1;
A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;
A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;

ELSE IF ( MYROW.EQ.0 .AND. MYCOL.EQ.1 ) THEN
A(1) = 1.3; A(2) = 2.3; A(3) = -5.3;
A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;

ELSE IF ( MYROW.EQ.1 .AND. MYCOL.EQ.0 ) THEN
A(1) = -3.1; A(2) = -4.1;
A(1+LDA) = -3.2; A(2+LDA) = -4.2;
A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;

ELSE IF ( MYROW.EQ.1 .AND. MYCOL.EQ.1 ) THEN
A(1) = 3.3; A(2) = -4.3;
A(1+LDA) = 3.4; A(2+LDA) = 4.4;

END IF
oooo

CALL PDGESVD( JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU,
JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK,
INFO )

oooo

a11 a12 a15 a13 a14 

a21 a22 a25 a23 a24 

a51 a52 a55 a53 a54 

a31 a32 a35 a33 a34 

a41 a42 a45 a43 a44 
 

 

0 1

2 3

0 1

0

1

LDA is the leading 
dimension of the local 
array (see next slides)

LDA is the leading 
dimension of the local 
array (see next slides)

Array descriptor for A 
(see next slides)

Array descriptor for A 
(see next slides)
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ScaLAPACK: array descriptors

• Each global data object is assigned an array descriptor.
• The array descriptor:

• Contains  information required to establish  mapping between a 
global array entry and its corresponding process and memory location 
(uses concept of BLACS context).

• Is differentiated by the DTYPE_ (first entry) in the descriptor.
• Provides a flexible framework to easily specify additional data 

distributions or matrix types.

• User must distribute all global arrays prior to the invocation 
of a ScaLAPACK routine, for example:
• Each process generates its own submatrix.
• One processor reads the matrix from a file and send pieces to other 

processors (may require message-passing for this).
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Array Descriptor for Dense Matrices

DESC_() Symbolic Name Scope Definition

1
2
3
4 
5

6

7

8

9

DTYPE_A
CTXT_A
M_A
N_A
MB_A

NB_A

RSRC_A

CSRC_A

LLD_A

(global)
(global)
(global)
(global)
(global)

(global)

(global)

(global)

(local)

Descriptor type DTYPE_A=1 for dense matrices.
BLACScontext handle.
Number of rows in global array A.
Number of columns in global array A.
Blocking factor used to distribute the rows of 
array  A.
Blocking factor used to distribute the columns 
of array A.
Process row over which the first row of the 
array A is distributed.
Process column over which the first column of 
the array A is distributed.
Leading dimension of the local array.
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Array Descriptor for Narrow Band Matrices

DESC_() Symbolic Name Scope Definition

1

2
3
4 

5

6

7                 

DTYPE_A

CTXT_A
N_A
NB_A

CSRC_A

LLD_A 

−−−−

(global)

(global)
(global)
(global)

(global)

(local)

−−−−

Descriptor type DTYPE_A=501 for 1 x Pc process 
grid for band and tridi agonal matrices block-column 
distributed.
BLACS context handle.
Number of columns in global array A.
Blocking factor used to distribute the columns of 
array A.
Process column over which the first column of the 
array A is distributed.
Leading dimension of the local array. For the 
tridiagonal subroutines, this entry is ignored.
Unused, reserved.
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Array Descriptor for Right Hand Sides for Narrow Band Linear Solvers

DESC_() Symbolic Name Scope Definition

1

2
3
4 
5

6

7

DTYPE_B

CTXT_B
M_B
MB_B
RSRC_B

LLD_B

−−−−

(global)

(global)
(global)
(global)
(global)

(local)

−−−−

Descriptor type DTYPE_B=502 for Pr x 1 process grid 
for block -row distributed matrices .
BLACS context handle.
Number of rows in global array B
Blocking factor used to distribute the rows of array B.
Process row over which the first row of the array B is 
distributed.
Leading dimension of the local array. For the 
tridiagonal subroutines, this entry is i gnored.
Unused, reserved.
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ScaLAPACK: Functionality

xx
x
x

xLeast Squares
GQR
GRQ

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx

xxxx
xxxx
xxxx

Symmetric
General
Generalized BSPD
SVD

SolutionReductionExpert 
Driver

Simple 
Driver

Ax = λλλλx or Ax = λλλλBx

xxxx
x
x

x
x
x

xx
x
x

General
General Banded
General Tridiagonal

xxxx
x
x

x
x
x

xx
x
x

SPD
SPD Banded
SPD Tridiagonal

xxxxTriangular

Iterative 
Refinement

Conditioning 
Estimator

InversionSolveFactorExpert 
Driver

Simple 
Driver

Ax = b
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ScaLAPACK: Performance

• The algorithms implemented in ScaLAPACK are scalable in the sense 
that the parallel efficiency is an increasing function of N2/P (problem 
size per node).

• Maintaining memory use per node constant allows efficiency to be
maintained (in practice, a slight degradation is acceptable). 

• Use efficient machine-specific BLAS (not the Fortran 77 source code available 
in http://www.netlib.gov) and BLACS (nondebug installation).

• On a distributed-memory computer:
• Use the right number of processors

• Rule of thumb: P=MxN/1,000,000 for an MxN matrix, which provides 
a local matrix of size approximately 1000-by-1000.

• Do not try to solve a small problem on too many processors.
• Do not exceed the physical memory.

• Use an efficient data distribution.
• Block size (i.e., MB,NB) = 64.
• Square processor grid: Prow = Pcolumn.



On line tutorial: http://acts.nersc.gov/scalapack/hands-on/main.html
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What about tuning and performance analysis?

• Profiling of Java, C++, C, and Fortran codes
• Detailed information (much more than prof/gprof)
• Profiles for each unique template instantiation
• Time spent exclusively and inclusively in each function
• Start/Stop timers
• Profiling data maintained for each thread, context, and node
• Parallel IO Statistics for the number of calls for each profiled function
• Profiling groups for organizing and controlling instrumentation
• Support for using CPU hardware counters (PAPI)
• Graphic display for parallel profiling data
• Graphical display of profiling results (built-in viewers, interface to Vampir)

• Profiling of Java, C++, C, and Fortran codes
• Detailed information (much more than prof/gprof)
• Profiles for each unique template instantiation
• Time spent exclusively and inclusively in each function
• Start/Stop timers
• Profiling data maintained for each thread, context, and node
• Parallel IO Statistics for the number of calls for each profiled function
• Profiling groups for organizing and controlling instrumentation
• Support for using CPU hardware counters (PAPI)
• Graphic display for parallel profiling data
• Graphical display of profiling results (built-in viewers, interface to Vampir)

TAUTAU
• COSY: COmpile manager Status displaY
• FANCY: File ANd Class displaY 
• SPIFFY: Structured Programming Interface and 

Fancy File displaY
• CAGEY: CAll Graph Extended displaY
• CLASSY: CLASS hierarchY browser
• RACY: Routine and data ACcess profile displaY
• SPEEDY: Speedup and Parallel Execution 

Extrapolation DisplaY

• COSY: COmpile manager Status displaY
• FANCY: File ANd Class displaY 
• SPIFFY: Structured Programming Interface and 

Fancy File displaY
• CAGEY: CAll Graph Extended displaY
• CLASSY: CLASS hierarchY browser
• RACY: Routine and data ACcess profile displaY
• SPEEDY: Speedup and Parallel Execution 

Extrapolation DisplaY
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TAU: Example 1
PROGRAM PSGESVDRIVER
!
! Example Program solving Ax=b via ScaLAPACK routine PSGESV
!
! .. Parameters ..

!**** a bunch of things omitted for the sake of space ****

! .. Executable Statements ..
!
! INITIALIZE THE PROCESS GRID
!

integer profiler(2)
save profiler

call TAU_PROFILE_INIT()
call TAU_PROFILE_TIMER(profiler,'PSGESVDRIVER')
call TAU_PROFILE_START(profiler)
CALL SL_INIT( ICTXT, NPROW, NPCOL )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )

!**** a bunch of things omitted for the sake of space ****

CALL PSGESV( N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, &
INFO )

!**** a bunch of things omitted for the sake of space ****

call TAU_PROFILE_STOP(profiler)
STOP
END

NB. ScaLAPACK routines have not been instrumented and 
therefore are not shown in the charts.
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TAU: Example 2

• EVH1 (Enhanced Virginia Hydrodynamics #1) 
benchmark

• MPI code developed from VH1, based on the piece-
wise parabolic method (PPM) of Colella and Woodward

• PPM is a technique used for compressible, non-
turbulent hydrodynamics. It has been used in a 
variety of astrophysical contexts, in addition to some 
ideal gas computations and studies of convection

JRACY, time spent in each process.

JRACY, exclusive and inclusive level 1 data cache misses for 
all routines (except PARABOLA), mean over 16 processors. 

Visualizing TAU traces with Vampir, a commercial 
trace visualization tool from Pallas, GmbH.
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Why is ACTS unique?

• Provides pointers and documentation about software tools.
• Accumulates the expertise and user feedback on the use of 

the software tools and scientific applications that used 
them: 
• independent software evaluations
• participation in the developer user groups e-mail list
• presentation of a gallery of applications 
• leverage between tool developers and tool users 
• workshops and tutorials
• tool classification
• support
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Related Activities

• Software Repositories:
• Netlib: http://www.netlib.org
• HPC-Netlib: http://www.nhse.org/hpc-netlib
• National HPCC Software Exchange NHSE: http://www.nhse.org
• Guide to Available Mathematical Software: http://gams.nist.gov
• MGNet: http://www.mgnet.org
• NEOS: http://www-fp.mcs.anl.gov/otc/Guide
• OO Numerics:  http://oonumerics.org/oon

• Portable timing routines, tools for debugging, compiler technologies:
• Ptools: http://www.ptools.org
• Center for Programming Models for Scalable Parallel Computing: http://www.pmodels.org

• Education:
• Computational Science Educational Project:  http://csep1.phy.ornl.gov
• UCB’s Applications of Parallel Computers: http://www.cs.berkeley.edu/~demmel/cs267_Spr99
• MIT’s Applied Parallel Computing: http://www.mit.edu/~cly/18.337
• Dictionary of algorithms, data structures and related definitions: http://www.nist.gov/dads
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Lessons Learned

• There is still a gap between tool developers and application 
developers which leads to duplication of efforts.

• The tools currently included in the ACTS Collection should be 
seen as dynamical configurable toolkits and should be grouped 
into toolkits upon user/application demand. 

• Users demand long-term support of the tools.
• Applications and users play an important role in making the tools 

mature.
• Tools evolve or are superseded by other tools.
• There is a demand for tool interoperability and more uniformity 

in the documentation and user interfaces.
• There is a need for an intelligent and dynamic catalog/repository 

of high performance tools.



User Community

ACTS

Challenge Codes Computing Systems

Interoperability

Pool of 
Software Tools

Testing and 
Acceptance Phase

Collaboratories

Workshops and Training

Scientific Computing 
Centers

Computer Vendors

Numerical SimulationsPhysics
ChemistryBiology

Medicine

Mathematics

Bioinformatics
Computer Sciences

Engineering
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Who Benefits from these tools? 

... More Applications …

http://acts.nersc.gov/AppMathttp://acts.nersc.gov/AppMat

Enabling sciences
and discoveries…

with
high performance 
and scalability...
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Scientific Computing – Third Pillar of Science

Subsurface
Transport

Many SC programs
need dramatic advances
in simulation capabilities

to meet their
mission goals

Health Effects, 
Bioremediation

Combustion

Materials

Fusion Energy

Components
of Matter

Global
Climate

“a new way of doing science”
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Addressing the Performance Gap through Software

Peak performance is skyrocketing
� In 1990s, peak performance 

increased 100x; in 2000s, it will 
increase 1000x

But
� Efficiency for many science 

applications declined from 40-
50% on the vector 
supercomputers of 1990s to as 
little as 5-10% on parallel 
supercomputers of today

Need research on
� Mathematical methods and 

algorithms that achieve high 
performance on a single 
processor and scale to thousands 
of processors

� More efficient programming 
models for massively parallel 
supercomputers
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• Libraries written in different 
languages.

• Different pieces of the code evolve at 
different rates

• Swapping competing 
implementations of the same idea and 
testing without modifying the code

• Libraries written in different 
languages.

• Different pieces of the code evolve at 
different rates

• Swapping competing 
implementations of the same idea and 
testing without modifying the code

Challenges in the Development of Scientific Codes
• Productivity

• Time to the first solution (prototype)
• Time to solution (production)
• Other requirements

• Complexity
• Increasingly sophisticated models
• Interdisciplinarity
• Model coupling

• Performance
• Increasingly complex algorithms
• Increasingly complex architectures
• Increasingly demanding applications
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• Performance
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• Increasingly complex architectures
• Increasingly demanding applications
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However

� Efficiency for many science applications declined 
from 40-50% on the vector supercomputers of 
1990s to as little as 5-10% on parallel 
supercomputers of today
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• An expanded Framework for the Advanced Computational 
Testing and Simulation Toolkit,
http://acts.nersc.gov/documents/Proposal.pdf

• The Advanced Computational Testing and Simulation 
(ACTS) Toolkit. Technical Report LBNL-50414. 

• A First Prototype of PyACTS. Technical Report LBNL-53849. 
• ACTS - A collection of High Performing Tools for Scientific 

Computing. Technical Report LBNL-53897.
• The ACTS Collection: Robust and high-performance tools for 

scientific computing. Guidelines for tool inclusion and 
retirement. Technical Report LBNL/PUB-3175. 

• An Infrastructure for the creation of High End Scientific and 
Engineering Software Tools and Applications. Technical 
Report LBNL/PUB-3176.

ReferencesReferences

acts-support@nersc.gov
http://acts.nersc.gov

To appear: two journals 
featuring ACTS Tools.

To appear: two journals 
featuring ACTS Tools.

• How Can ACTS Work for you?, 
http://acts.nersc.gov/events/Workshop2000

• Solving Problems in Science and Engineering, 
http://acts.nersc.gov/events/Workshop2001

• Robust and High Performance Tools for Scientific Computing, 
http://acts.nersc.gov/events/Workshop2002

• Robust and High Performance Tools for Scientific Computing, 
http://acts.nersc.gov/events/Workshop2003

• The ACTS Collection: Robust and High Performance 
Libraries for Computational Sciences, SIAM PP04
http://www.siam.org/meetings/pp04

• New Methods for Developing Peta-scalable Codes, PSC
http://www.psc.edu/training/PPS_May04

Tutorials and WorkshopsTutorials and Workshops
• FY 2002, http://acts.nersc.gov/documents/Report2002.pdf
• FY 2003-1, http://acts.nersc.gov/documents/Report2003-1.pdf
• FY 2003-2, http://acts.nersc.gov/documents/Report2003-2.pdf

Progress ReportsProgress Reports
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Tool descriptions, 
installation 

details, examples, 
etc

Agenda, 
accomplishments, 

conferences, 
releases, etc

Goals and other 
relevant information

Points of 
contact

Search 
engine

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• Scientific Computing Centers 
like NERSC:

• Reduce user’s code development 
time that sums up in more 
production runs and faster and 
effective scientific research results

• Overall better system utilization
• Facilitate the accumulation and 

distribution of high performance 
computing expertise 

• Provide better scientific parameters 
for procurement and 
characterization of specific user 
needs

• High Performance Tools
• portable
• library calls
• robust algorithms
• help code optimization

• Scientific Computing Centers 
like NERSC:

• Reduce user’s code development 
time that sums up in more 
production runs and faster and 
effective scientific research results

• Overall better system utilization
• Facilitate the accumulation and 

distribution of high performance 
computing expertise 

• Provide better scientific parameters 
for procurement and 
characterization of specific user 
needs

See also: http://acts.nersc.gov/documentsSee also: http://acts.nersc.gov/documents


